转:时间序列预测之–ARIMA模型

什么是 ARIMA模型

ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型。

1. ARIMA的优缺点

优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量。

缺点:
1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。
2.本质上只能捕捉线性关系,而不能捕捉非线性关系。
注意,采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

2. 判断是时序数据是稳定的方法。

严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间的(是关于时间的常量)。
判断的方法:

  1. 稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的方差,在时间轴上是趋于同一个稳定的值的。
  2. 可以使用Dickey-Fuller Test进行假设检验。(另起文章介绍)

3. ARIMA的参数与数学形式

ARIMA模型有三个参数:p,d,q。

  • p–代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项
  • d–代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。
  • q–代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

先解释一下差分: 假设y表示t时刻的Y的差分。

if d=0, yt=Ytif d=1, yt=YtYt1if d=2, yt=(YtYt1)(Yt1Yt2)=Yt2Yt1+Yt2if d=0, yt=Ytif d=1, yt=Yt−Yt−1if d=2, yt=(Yt−Yt−1)−(Yt−1−Yt−2)=Yt−2Yt−1+Yt−2

ARIMA的预测模型可以表示为:

Y的预测值 = 常量c and/or 一个或多个最近时间的Y的加权和 and/or 一个或多个最近时间的预测误差。

假设p,q,d已知,
ARIMA用数学形式表示为:

ytˆ=μ+ϕ1yt1+...+ϕpytp+θ1et1+...+θqetqyt^=μ+ϕ1∗yt−1+…+ϕp∗yt−p+θ1∗et−1+…+θq∗et−q

 

,ϕARθMA其中,ϕ表示AR的系数,θ表示MA的系数

4.ARIMA模型的几个特例

1.ARIMA(0,1,0) = random walk:

当d=1,p和q为0时,叫做random walk,如图所示,每一个时刻的位置,只与上一时刻的位置有关。
file-list
预测公式如下:

Yˆt=μ+Yt1Y^t=μ+Yt−1

2. ARIMA(1,0,0) = first-order autoregressive model:

p=1, d=0,q=0。说明时序数据是稳定的和自相关的。一个时刻的Y值只与上一个时刻的Y值有关。

Yˆt=μ+ϕ1Yt1.where, ϕ[1,1],Y^t=μ+ϕ1∗Yt−1.where, ϕ∈[−1,1],是一个斜率系数

3. ARIMA(1,1,0) = differenced first-order autoregressive model:

p=1,d=1,q=0. 说明时序数据在一阶差分化之后是稳定的和自回归的。即一个时刻的差分(y)只与上一个时刻的差分有关。

yˆt=μ+ϕ1yt1YˆtYt1=μ+ϕ1(Yt1Yt2)Yˆt=μ+Yt1+ϕ1(Yt1Yt2)y^t=μ+ϕ1∗yt−1结合一阶差分的定义,也可以表示为:Y^t−Yt−1=μ+ϕ1∗(Yt−1−Yt−2)或者Y^t=μ+Yt−1+ϕ1∗(Yt−1−Yt−2)

4. ARIMA(0,1,1) = simple exponential smoothing with growth.

p=0, d=1 ,q=1.说明数据在一阶差分后市稳定的和移动平均的。即一个时刻的估计值的差分与上一个时刻的预测误差有关。

yˆt=μ+α1et1q=1ytp=1ytyˆt=YˆtYˆt1, et1=Yt1Yˆt1,θ1=1α1Yˆt=μ+Yˆt1+α1(Yt1Yˆt1)=μ+Yt1θ1et1y^t=μ+α1∗et−1注意q=1的差分yt与p=1的差分yt的是不一样的其中,y^t=Y^t−Y^t−1, et−1=Yt−1−Y^t−1,设θ1=1−α1则也可以写成:Y^t=μ+Y^t−1+α1(Yt−1−Y^t−1)=μ+Yt−1−θ1∗et−1

5. ARIMA(2,1,2)

在通过上面的例子,可以很轻松的写出它的预测模型:

yˆt=μ+ϕ1yt1+ϕ2yt2θ1et1θ2et2:Yˆt=μ+ϕ1(Yt1Yt2)+ϕ2(Yt2Yt3)θ1(Yt1Yˆt1)θ2(Yt2Yˆt2)y^t=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2也可以写成:Y^t=μ+ϕ1∗(Yt−1−Yt−2)+ϕ2∗(Yt−2−Yt−3)−θ1∗(Yt−1−Y^t−1)−θ2∗(Yt−2−Y^t−2)

6. ARIMA(2,2,2)

yˆt=μ+ϕ1yt1+ϕ2yt2θ1et1θ2et2Yˆt=μ+ϕ1(Yt12Yt2+Yt3)+ϕ2(Yt22Yt3+Yt4)θ1(Yt1Yˆt1)θ2(Yt2Yˆt2)y^t=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2Y^t=μ+ϕ1∗(Yt−1−2Yt−2+Yt−3)+ϕ2∗(Yt−2−2Yt−3+Yt−4)−θ1∗(Yt−1−Y^t−1)−θ2∗(Yt−2−Y^t−2)

7. ARIMA建模基本步骤

  1. 获取被观测系统时间序列数据;
  2. 对数据绘图,观测是否为平稳时间序列;对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列;
  3. 经过第二步处理,已经得到平稳时间序列。要对平稳时间序列分别求得其自相关系数ACF 和偏自相关系数PACF,通过对自相关图和偏自相关图的分析,得到最佳的阶层 p 和阶数 q
  4. 由以上得到的d、q、p,得到ARIMA模型。然后开始对得到的模型进行模型检验。
    具体例子会在另一篇文章中给出。

转自geek精神   https://www.cnblogs.com/bradleon/p/6827109.html

发表评论

Fill in your details below or click an icon to log in:

WordPress.com 徽标

You are commenting using your WordPress.com account. Log Out /  更改 )

Google photo

You are commenting using your Google account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )

Connecting to %s

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理